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Abetract 

A lattice Virasoro algebra is constructed for the Baxter eight-vertex 

model. The operator Ls is obtained from the logarithm of the corner 

transfer matrix and is given by the first moment of the XYZ spin chain 

Hamiltonian. The algebra is valid even when the Hamiltonian includes 

a mass term, in which case it represents lattice coordinate transforma- 

tions which distinguish between even and odd sublattices. We apply the 

quantum inverse scattering method to demonstrate that the Virasoro 

algebra follows from the Yang-Baxter relations. 
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Conformally invariant two-dimensional field theories exhibit an infinite degree 

of symmetry corresponding to invariance under analytic reparametrizations of the 

complex coordinate z = z + iy (or z = z - iy), where x and y are Euclidean 

coordinates. The algebraic structure of this symmetry is expressed in the Lie algebra 

of the conformal generators L, and &, associated with infinitesimal coordinate 

transformations .z + z + ct”+i and z + E + FE”+‘. The operators L, and z, 

are constructed from moments of the stress-energy tensor and constitute a pair of 

commuting Virasoro algebras. [l] 

Another type of infinite dimensional symmetry which occurs in some two dimen- 

sional theories is that of complete integrability. At the quantum level, the algebraic 

structure of complete integrability is most generally expressed in terms of Yang- 

Baxter relations [2,3] which are either trilinear relations between local interaction 

“vertices” or commutation relations for local operator-valued “L-matrices.” In the 

quantum inverse method [4], the Yang-Baxter relations are used to determine the 

algebra of operators extracted from the monodromy matrix. These include a one- 

parameter set of commuting transfer matrices T(u) (which acts as the generating 

function for an infinite number of conservation laws) as well as the mode creation 

and annihilation operators from which the Bethe-type eigenstates of T(v) are con- 

structed [4]. 

There are certain systems which exhibit both quantum integrability Bnd con- 

formal symmetry, for example, completely integrable lattice models (e.g. Ising or 

Baxter models) at the critical temperature. For these cases, it is reasonable to ex- 

pect that the algebraic structure of the Yang-Baxter relations is closely related to 

that of the conformal Virasoro algebra. In this note, we will discuss the connection 

between Yang-Baxter relations and Virasoro algebras in the general framework of 

exactly solvable models and show that it is not restricted to critical cases. We 

demonstrate this by constructing a Virasoro algebra for the general g-vertex model. 

The result is based on Baxter’s method of corner transfer matrices [5], which has 

proved to be a powerful method for obtaining exact results in integrable lattice 

models. For the general eight-vertex model, we construct the Virasoro algebra in 

the diagonal representation of the corner transfer matrix (CTM). To trace its con- 

nection to the Yang-Baxter relations, we then consider the more restricted case of 

the six-vertex model with ]A] > 1 and explicitly construct the Virasoro operators in 

terms of the elements of the monodromy matrix of the quantum inverse scattering 
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formalism. The interpretation of the CTM as the lattice generalization of a Lorents 

boost or rapidity shift operator [6,7]plays a central role in this construction. 

An important feature of the lattice Lorentz group is that it is compact due to 

the Brillouin zone periodicity of momentum space on a lattice. It is this periodicity 

which leads to the discreteness of the eigenvalues of Lo. Note that in the usual 

construction of a conformal Virasoro algebra at the critical point[8], operators are 

defined by integrals over closed contours in the complex z-plane (“radial quantiza- 

tion”), and integer-spaced eigenvalues of Ls arise from periodicity under Euclidean 

rotations by 27r. Here we consider operators which act on infinite or semi-infinite 

rows of spins and are thus necessarily defined in a fixed-time quantization scheme. 

In the continuum theory, radial and fixed-time quantization are equivalent by a 

conformal transformation. However, at finite lattice spacing, this equivalence no 

longer holds. For this reason the Brillouin zone periodicity of the lattice is an es- 

sential component of our construction. In the elliptic function parametrization of 

the Baxter model, periodicity of boosts’and Euclidean rotations are associated with 

real and imaginary values of the rapidity, respectively, and are related to each other 

by a Jacobi (conjugate-modulus) transformation which interchanges the two ellip- 

tic periods. There is thus a kind of dual relationship between the Virasoro algebra 

we construct here and the more familiar one at the critical point. However, our 

construction applies to the general case when T # TE, i. e. when the spectrum has 

a mass gap. This occurs because the Baxter model is equivalent to a staggered 

lattice fermion system [9,10]. An investigation of the transformation properties of 

the fermion fields reveals that, in the massive case, the Virasoro generators induce 

coordinate transformations which distinguish between even and odd sublattices. A 

detailed discussion of the geometrical significance of the algebra, the role of mass, 

and other related issues will be given in a forthcoming paper. 

We employ standard notation for the Boltzmann weight parameters a, b, c, and 

d of the eight-vertex model (c.f. Ref. [Ill). In the “arrow” representation, a single 

vertex may be written ss a two-spin operator which takes the lower and right arrows 

of the vertex to the left and upper arrows respectively, 

b = :[a + ~4 -I- (0 - d)$~f+, + (b + ~)uj”uj”+~ + (b - c)uj’uj’,,]. (1) 

where ~7, $, and 07 are Pauli spin matrices acting on the jth spin. The corner 



-3- FERMILAB-Pub-861152-T 

transfer matrix (CTM) is defined by picking an origin at the center of the lattice 

and considering one quadrant of the lattice with fixed spins along the two edges. 

The elements of the CTM are labelled by the row and column of edge spins and are 

given by the partition function with edge spins fixed (weighted sum over all spins 

interior to the quadrant). Following Baxter [5,11] we denote a row of vertices by 

G!“’ = v,v,-,v,-, . v. I . . I 

and write the CTM as 

A(“) = G,G2G3...Gn (3) 

Baxter showed that, in the low temperature regime, the CTM with its largest 

eigenvalue normalized to unity has a well defined thermodynamic limit, 

A = ill A(“)/@ 

where X!j”l is the largest eigenvalue of A(“). 

Let us briefly review the properties of the operator A which were discovered by 

Baxter. We begin by introducing the elliptic function parametrization of the vertex 

weights as discussed in [ll], 

a = 
snh( X - u) 

snh X 
snh u b=- 
snh X 

e = 1 

(5) 

(6) 

(7) 

d = ksnhusnh(X -u) (81 

where k is the elliptic modulus. Following Baxter[5,11], we work in the “principle 

regime,” 0 < k < 1 and 0 < u < X < K’, where K’ is a complete elliptic integral 

(quarter period). In the discussion of the quantum integrability of the Baxter model, 

the parameter u in (8) plays the special role of the spectral or lattice rapidity variable 

which parametrizes a set of commuting transfer matrices. Baxter found that the 

operator A could be diagonalized by a u-independent similarity transformation, 
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AD = PA(u)P-‘, where the diagonal CTM has the remarkably simple form 

Thus, the eigenvalues of -i log A are all non-negative integers. Baxter also showed 

that the operator -i log A could be written as the first moment of the XYZ Heisen- 

berg spin chain Hamiltonian density, 

- ;logA = j&~z(j,j + 1) 
j=1 

where 

Mx(,,,(j,j + 1) = JzU;U+i + J”b;O;+1 + J.u;u;+t (11) 

and J, : Jv : J. = ab + cd : ab - cd : $(a’ + b* - c2 -d*). (Note that the logarithmic 

derivative of the row-to-row transfer matrix is the XYZ Hamiltonian, i.e. the seroth 

moment of Mxrr.) In its diagonal form, obtained from (9), this may be written &s 

where uf is a Pauli matrix acting on a spin at site 1. 

By introducing the fermion variables 

G(l) = (‘i;iuf) u; 
i=l 

(where of = u1 + ia’), the diagonal operator (12) may be written 

- ; log AD = 2 l$(l)G(l) + const. 
,=I 

(13) 

(14) 

The boost operator is actually the direct product of an upper-left and a lower-right 

CTM, which corresponds to extending the sum in (14) from -co to 00 and normal 

ordering. We also modify this operator by adding a term proportional to k the 

fermion number operator, giving 

2, = 2 (I + ;, : $(1)5,(l) : +const. 
,=-cc 

(15) 



-5- FERMILAB-Pub-86/152-T 

Here the normal ordering is taken with respect to the lowest eigenstate which has 

all negative I modes filled. 

In the interpretation of the CTM as a Lorentz boost or Euclidean rotation 

operator [6], u is the lattice analog of a rapidity or rotation angle parameter. It is 
this interpretation which provides the key to writing down the operators t, which 

are related to LO by a Virasoro algebra. For this purpose it is illuminating to write 

the classical conformal generators I, = z”+l& (where z = z + iy) in terms of an 

angle (rapidity) variable in momentum space. First define the Euclidean light cone 

momentum p = p, - ipu conjugate to z, and then introduce a rapidity or angle 

variable a by letting p = em’=. Thus, for n 2 0 

*“fl & --t (-iyp($“+ a .a -+ i-(P aa ZJ” 

The operator lo, represented by “& , is diagonalized by eigenfunctions of the form 

fi(cx) = ei(‘+rln, where I is any integer and the value of E is determined by boundary 

conditions connecting (x to a+2x. Choosing them to be antiperiodic, we take .s = i. 

The action of l,, on these functions is given by 

I”fi(cY) = (I + $(I + ;)...(I + n+ ;,h&, = r(;;;~)%+nb) (17) 
2 

Comparing equations (15) and (17) f or n = 0, we are led to introduce the‘following 

lattice operators in the Baxter model: 

Ln = l=Fm - r(l+n+3 :qt(l)&r+n):+h6”,o r(l + ;) 08) 

where the @s are as defined previously in eq.(13) and the constant h will be chosen 

below. Note that, although the correspondence between z”“& and (17) only holds 

for n > 0, we are taking (18) as the definition of i, for negative n as well. It is at this 

point that an important property of our Virasoro algebra arises: it does not satisfy 

the self-adjointness condition $, # t-,. The unitarity argument which limits the 

allowed values of the central charge c does not apply because the norm determinant 

is not given by the Kac formula [12]. (In fact c turns out to be negative.) It is a 

straightforward exercise to verify that the operators (18) satisfy a Virasoro algebra, 

[~“?Ll = (n - m)i,+, + $2 - n)6n,-m 
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The nonzero value of the central charge c is an anomaly which comes about from 

filling the Dirac sea. It may be computed by standard methods [13]. The constant 

h in (18) is dictated by the form of (19). This gives 

It is interesting to note that the values (20) correspond to the first disallowed 

member of the Friedan, Qiu, Shenker sequence (the m = 1,p = q = 0 case in eq. (6) 

and (7) of Ref. [14]). That point wss excluded by a positivity argument [15] which 

does not apply here because our algebra is not self-adjoint. 

Equation (18) expresses the operators J?,, for the eight-vertex model in terms 

of the fermion operators G(I) w ic were defined in the diagonal representation of h’ h 

the CTM. To clarify the connection between the algebra (19) and the Yang-Baxter 

relations, we would like to express the L,‘s in the original arrow representation, 

i.e. to calculate L, = P-‘&P. For this purpose it is useful to restrict our consid- 

eration to the six-vertex model with /A] > 1. For this case, the quantum inverse 

scattering formalism [16] can be used to explicitly construct the Virasoro operators 

in terms of elements of the monodromy matrix. (It may be possible to carry out a 

similar procedure for the general case, but there are additional complications in the 

quantum inverse formalism for the general Baxter model.) The monodromy matrix 

TN(V) is defined as a row of N vertices with free ends. Taking N to be even, we 

write 

TN(V) = T’_$‘-u+I.. .iL& s AN(U) %(u) 

BN(u) -G(u) 
(21) 

Here the vertex Vj is regarded as a 2 x 2 matrix of one-spin operators, rather than 

a two-spin operator, 

where 

vj = 
i 

w4 + t&u; WI - iw*u; 

WI + iw*ujz q - w3uj 1 
(22) 

wl = +(c+d) w2 = ;(c-d) 

~=;(a-b) wd=;(a+b) (23) 

For the six-vertex case we take d = 0. The row-to-row transfer matrix TN(u) is 

the trace of the monodromy matrix, TN = TrTN = A + A’. The elements of the 
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monodromy matrix possess algebraic properties which follow from the Yang-Baxter 

relations. In order to consider the algebraic relation between the monodromy matrix 

and the CTM, we need to take the infinite volume limit, N + 00 (see Ref. [4]. In 

this limit the algebra of A and B operators simplifies to the following: 

A(u)B(v) = “i??~,, ~:)‘)B(~)A(~) 

A’(u)B(v) = si~~~~(~UI)X)B(u)A’(u) 

(24) 

B(u)B’(v) = sinh(u - :i+h~‘,~i~h~; - u - ‘)B*(,)B(u) 
(26) 

+A’(u)A(u)6(u - v) (27) 

[A(u),A(v)l = [A(u),A’(v)l = P(4,B(v)l = 0 (28) 

In Ref. [S] it was shown that the CTM acts as a rapidity shift operator when applied 

as a similarity transformation to the row-to-row transfer matrix. This follows simply 

from the commutation relation 

["XUZ(i,i + l),fi(U)Pj+l(U)] = V;.(U)ECPj+l(U) 

which is obtained from the Yang-Baxter relations. From the commutator(29) it is 

easy to show that Le generates a rapidity shift when commuted with the monodromy 

matrix, 

[~a, T(u)1 = gw (30) 

Next we construct the reflection operator 

R’(u) = B(u)A-‘((I) 

which is the creation operator for normalized eigenstates of the row-to-row transfer 

matrix. The commutation relations of the operators R and R’ involve two-body 

phase shift factors. These factors may be removed by defining [I71 

x(u) = R(ulexp (i/:: dve(u - u)R’(u)R(v)) 

where O(v) is the two-body phase shift, 

(32) 

tan+@(u) = -itanhucothX (33) 
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From the algebra of the A and B operators (28), it follows that x(u) satisfies 

canonical anticommutation relations, 

{x(4x+(4) = S(u - u) (34) 

{x(uLx(v)) = {x+bLx+(‘J)) = 0 (35) 

From the commutation relation (30) we find that x(u) also has the rapidity shift 

property 

Lb, x(41 = $X(4 (36) 

Finally we introduce the Fourier transformed operators 

$(I) = /_: ge’(‘+i)~X(u), (37) 

which have the property 

(38) 

From this commutation relation, we conclude that Ls is given in terms of $(I) by 

the expression (18) with the tilde’s removed, and that therefore, G(r) = P-‘&P. 

This explicitly defines the transformation which diagonalises the CTM and allows 

us to express the Virssoro operators in the arrow representation. 
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